In b	oth reactions one of the products is copper chloride.	
(a)	Describe how a sample of copper chloride crystals could be made from copper carbonate and dilute hydrochloric acid.	
(b)	A student wanted to make 11.0 g of copper chloride.	
	The equation for the reaction is:	
	$CuCO_3 + 2HCl \rightarrow CuCl_2 + H_2O + CO_2$	
	Relative atomic masses, A_r : H = 1; C = 12; O = 16; Cl = 35.5; Cu = 63.5	
	Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make $11.0\mathrm{g}$ of copper chloride.	
	Mass of copper carbonate = g	

(c) The percentage yield of copper chloride was 79.1 %.

	Calculate the n	nass of copper chloride the student actually produced.	
		Actual mass of copper chloride produced = g	
L	Look at the equ	nations for the two reactions:	
	Reaction 1	$CuCO_3(s) + 2HCI(aq) \rightarrow CuCl_2(aq) + H_2O(I) + CO_2(g)$	
	Reaction 2	$CuO(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l)$	
	Reactive formu	ula masses: CuO = 79.5; HCl = 36.5; CuCl ₂ = 134.5; H ₂ O = 18	
	The percentage	e atom economy for a reaction is calculated using:	
	Sum of	relative formula masses of all reactants from equation	100
	Sum of		100
	Sum of	relative formula masses of all reactants from equation	100
	Sum of	relative formula masses of all reactants from equation	100
	Sum of	relative formula masses of all reactants from equation	100
	Sum of	relative formula masses of all reactants from equation	100
	Sum of	relative formula masses of all reactants from equation	100
	Sum of	relative formula masses of all reactants from equation	100
	Sum of	relative formula masses of all reactants from equation percentage atom economy for Reaction 2.	100
ī	Sum of I	relative formula masses of all reactants from equation percentage atom economy for Reaction 2.	100

(1)
(Total 14 marks)

Q2.Sodium carbonate reacts with dilute hydrochloric acid:

$$Na_2CO_3 + 2HCI \rightarrow 2NaCl + H_2O + CO_2$$

A student investigated the volume of carbon dioxide produced when different masses of sodium carbonate were reacted with dilute hydrochloric acid.

This is the method used.

- 1. Place a known mass of sodium carbonate in a conical flask.
- 2. Measure 10 cm³ of dilute hydrochloric acid using a measuring cylinder.
- 3. Pour the acid into the conical flask.
- 4. Place a bung in the flask and collect the gas until the reaction is complete.
- (a) The student set up the apparatus as shown in the figure below.

Identify the error in the way the student set up the apparatus.

Describe what would happen if the student used the apparatus shown.

(2)

(b) The student corrected the error.

The student's results are shown in the table below.

Mass of sodium carbonate in g	Volume of carbon dioxide gas in cm ³
0.07	16.0

0.12	27.5
0.23	52.0
0.29	12.5
0.34	77.0
0.54	95.0
0.59	95.0
0.65	95.0

	The result for 0.29 g of sodium carbonate is anomalous.	
	Suggest what may have happened to cause this anomalous result.	
		(4)
		(1)
(c)	Why does the volume of carbon dioxide collected stop increasing at 95.0 cm ³ ?	
		(1)
		,
(d)	What further work could the student do to be more certain about the minimum mass of sodium carbonate needed to produce 95.0 cm ³ of carbon dioxide?	
		(1)
(e)	The carbon dioxide was collected at room temperature and pressure. The volume of one mole of any gas at room temperature and pressure is 24.0 dm ³ .	
	How many moles of carbon dioxide is 95.0 cm ³ ?	

	Give your answer in three significant figures.	
	mol	,
		(2
	Suggest one improvement that could be made to the apparatus used that would give more accurate results.	
	Give a reason for your answer.	
		(2
)	One student said that the results of the experiment were wrong because the first few bubbles of gas collected were air.	
	A second student said this would make no difference to the results.	
	Explain why the second student was correct.	
	Explain why the second student was correct.	
	Explain why the second student was correct.	
	Explain why the second student was correct.	
	Explain why the second student was correct.	
	Explain why the second student was correct.	
	Explain why the second student was correct.	

odiur	
The	equation for the reaction is:
	$2NaOH + H2SO4 \rightarrow Na2SO4 + 2H2O$
(a)	Sulfuric acid is a strong acid.
	What is meant by a strong acid?
(b)	Write the ionic equation for this neutralisation reaction. Include state symbols.
(a)	
(c)	A student used a pipette to add 25.0 cm ³ of sodium hydroxide of unknown concentration to a conical flask.
(c)	A student used a pipette to add 25.0 cm ³ of sodium hydroxide of unknown concentration to
(c)	A student used a pipette to add 25.0 cm ³ of sodium hydroxide of unknown concentration to a conical flask. The student carried out a titration to find out the volume of 0.100 mol / dm ³ sulfuric acid
(c)	A student used a pipette to add 25.0 cm ³ of sodium hydroxide of unknown concentration to a conical flask. The student carried out a titration to find out the volume of 0.100 mol / dm ³ sulfuric acid needed to neutralise the sodium hydroxide.
(c)	A student used a pipette to add 25.0 cm³ of sodium hydroxide of unknown concentration to a conical flask. The student carried out a titration to find out the volume of 0.100 mol / dm³ sulfuric acid needed to neutralise the sodium hydroxide. Describe how the student would complete the titration.
(c)	A student used a pipette to add 25.0 cm³ of sodium hydroxide of unknown concentration to a conical flask. The student carried out a titration to find out the volume of 0.100 mol / dm³ sulfuric acid needed to neutralise the sodium hydroxide. Describe how the student would complete the titration.

The student carried out five t	itrations. He	er results ar	e shown in t	the table be	low.
	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of 0.100 mol / dm³ sulfuric acid in cm³	27.40	28.15	27.05	27.15	27.15
	lume =				3
	lume =				3
Mean vol	lume =				3
Mean vol	lume = n is: OH + H ₂ SO ₄	→ Na ₂ SO ₂	+ 2H ₂ O		3
Mean vol The equation for the reaction 2Nac	lume = This: $OH + H_2SO_4$ of the sodiu	→ Na ₂ SO ₂ ım hydroxid	+ 2H ₂ O		3

	Concentration = mol / dm ³	
		(4)
(f)	The student did another experiment using 20 cm ³ of sodium hydroxide solution with a concentration of 0.18 mol / dm ³ .	
	Relative formula mass (M_r) of NaOH = 40	
	Calculate the mass of sodium hydroxide in 20 cm ³ of this solution.	
	Mass = g	
	(Total 16 n	(2) narks)